Detection of Pitting in Gears Using a Deep Sparse Autoencoder

نویسندگان

  • Yongzhi Qu
  • Miao He
  • Jason Deutsch
  • David He
چکیده

In this paper; a new method for gear pitting fault detection is presented. The presented method is developed based on a deep sparse autoencoder. The method integrates dictionary learning in sparse coding into a stacked autoencoder network. Sparse coding with dictionary learning is viewed as an adaptive feature extraction method for machinery fault diagnosis. An autoencoder is an unsupervised machine learning technique. A stacked autoencoder network with multiple hidden layers is considered to be a deep learning network. The presented method uses a stacked autoencoder network to perform the dictionary learning in sparse coding and extract features from raw vibration data automatically. These features are then used to perform gear pitting fault detection. The presented method is validated with vibration data collected from gear tests with pitting faults in a gearbox test rig and compared with an existing deep learning-based approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Keypoint Detection Based on Deep Neural Network with Sparse Autoencoder

Researchers have proposed various methods to extract 3D keypoints from the surface of 3D mesh models over the last decades, but most of them are based on geometric methods, which lack enough flexibility to meet the requirements for various applications. In this paper, we propose a new method on the basis of deep learning by formulating the 3D keypoint detection as a regression problem using dee...

متن کامل

Detecting Transportation Modes Using Deep Neural Network

Existing studies on transportation mode detection from global positioning system (GPS) trajectories mainly adopt handcrafted features. These features require researchers with a professional background and do not always work well because of the complexity of traffic behavior. To address these issues, we propose a model using a sparse autoencoder to extract point-level deep features from point-le...

متن کامل

The test analysis of transmission gears’ fatigue pitting

There were severe pitting corrosions on the surface of transmission gears in diesels. The cause of metal fatigue pitting of gear surface is analyzed in the paper, which based on the contact fatigue experiment of 18Cr2Ni4WA carburizing and quenching gears used in the diesel engine. Causes of pitting on harden tooth surface are studied from three aspects: gear surface residual stress field, oil f...

متن کامل

Detection and Classification of Dental Caries in X-ray Images Using Deep Neural Networks

Dental caries, also known as dental cavities, is the most widespread pathology in the world. Up to a very recent period, almost all individuals had the experience of this pathology at least once in their life. Early detection of dental caries can help in a sharp decrease in the dental disease rate. Thanks to the growing accessibility to medical imaging, the clinical applications now have better...

متن کامل

Learning Deep Representations for Graph Clustering

Recently deep learning has been successfully adopted in many applications such as speech recognition and image classification. In this work, we explore the possibility of employing deep learning in graph clustering. We propose a simple method, which first learns a nonlinear embedding of the original graph by stacked autoencoder, and then runs k-means algorithm on the embedding to obtain cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017